Weakly confluent mappings and the covering property of hyperspaces
نویسندگان
چکیده
منابع مشابه
Branchpoint Covering Theorems for Confluent and Weakly Confluent Maps
A branchpoint of a compactum X is a point which is the vertex of a simple triod in X. A surjective map /: X -» Y is said to cover the branchpoints of Y if each branchpoint in Y is the image of some branchpoint in X. If every map in a class % of maps on a class of compacta & covers the branchpoints of its image, then it is said that the branchpoint covering property holds for ff on 0. According ...
متن کاملWeakly Confluent Mappings and Finitely-generated Cohomology
In this paper we answer a question of Wayne Lewis by proving that if X is a one-dimensional, hereditarily indecomposable continuum and if HX(X) is finitely generated, then C(X), the hyperspace of subcontinua of X, has dimension 2. Let C(A) be the hyperspace of subcontinua of the continuum X with the topology determined by the Hausdorff metric. A classical theorem of J. L. Kelley [4] asserts tha...
متن کاملHereditarily Weakly Confluent Mappings onto S
Results are obtained about the existence and behavior of hereditarily weakly confluent maps of continua onto the unit circle S1. A simple and useful necessary and sufficient condition is given for a map of a continuum, X, onto S1 to be hereditarily weakly confluent (HWC). It is shown that when X is arcwise connected, an HWC map of X onto S1 is monotone with arcwise connected fibers. A number of...
متن کاملThe Reznichenko Property and the Pytkeev Property in Hyperspaces
We investigate two closure-type properties, the Reznichenko property and the Pytkeev property, in hyperspace topologies.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1979
ISSN: 0002-9939
DOI: 10.1090/s0002-9939-1979-0521894-4